ct 2 00 6 Differential Calculus for Dirichlet forms : The measure - valued gradient preserved by image ∗ Nicolas BOULEAU Ecole

نویسنده

  • Nicolas BOULEAU
چکیده

In order to develop a differential calculus for error propagation (cf [3]) we study local Dirichlet forms on probability spaces with carré du champ Γ – i.e. error structures – and we are looking for an object related to Γ which is linear and with a good behaviour by images. For this we introduce a new notion called the measure valued gradient which is a randomized square root of Γ. The exposition begins with inspecting some natural notions candidate to solve the problem before proposing the measure-valued gradient and proving its satisfactory properties. 1 Preamble Our main purpose being to study images, in order to avoid unessential difficulties, we restrict us to Dirichlet forms defined on probability spaces. On a probability space (W, W, m) let us consider a local Dirichlet form (D, E) ∗This work was presented at the meeting on Stochastic Analysis and Potential Theory, St Priest de Gimel, 1-6 sept 2002

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Calculus for Dirichlet forms: The measure-valued gradient preserved by image

In order to develop a differential calculus for error propagation (cf [3]) we study local Dirichlet forms on probability spaces with carré du champ ∆– i.e. error structures – and we are looking for an object related to ∆ which is linear and with a good behaviour by images. For this we introduce a new notion called the measure valued gradient which is a randomized square root of ∆. The expositio...

متن کامل

Error calculus and regularity of Poisson functionals : the lent particle method

We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures. Résumé Calcul d’erreur et régularité des fonctionnelles de Poisson : la méthode de la particule prêtée. Nous proposons une nouvelle méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson. 1 Notation and basic...

متن کامل

Dirichlet Forms for Poisson Measures and Lévy Processes: The Lent Particle Method

We present a new approach to absolute continuity of laws of Poisson functionals. The theoretical framework is that of local Dirichlet forms as a tool to study probability spaces. The method gives rise to a new explicit calculus that we show first on some simple examples : it consists in adding a particle and taking it back after computing the gradient. Then we apply it to SDE’s driven by Poisso...

متن کامل

Energy image density property and local gradient for Poisson random measures

We introduce a new approach to absolute continuity of laws of Poisson functionals. It is based on the energy image density property for Dirichlet forms and on what we call the lent particle method which consists in adding a particle and taking it back after some calculation. AMS 2000 subject classifications: Primary 60G57, 60H05 ; secondary 60J45,60G51

متن کامل

Some Historical Aspects of Error Calculus by Dirichlet Forms

We discuss the main stages of development of the error calculation since the beginning of XIX-th century by insisting on what prefigures the use of Dirichlet forms and emphasizing the mathematical properties that make the use of Dirichlet forms more relevant and efficient. The purpose of the paper is mainly to clarify the concepts. We also indicate some possible future research.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002